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Summary

In this text we present the development of predicate calculus in axiomatic form.
The language of our calculus bases on the formalizations of D. Hilbert, W. Ack-
ermann[3], P. S. Novikov [1], V. Detlovs and K. Podnieks[2]. New rules can be
derived from the herein presented logical axioms and basic inference rules. Only
these meta rules lead to a smooth flowing logical argumentation. For back-
ground informations see under http://www.ltn.lv/~podnieks/mlog/ml.htm
and http://en.wikipedia.org/wiki/Propositional_calculus.
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Chapter 1

Language

In this chapter we define a formal language to express mathematical proposi-
tions in a very precise way. Although this document describes a very formal
approach to express mathematical content it is not sufficent to serve as a defi-
nition for an computer readable document format. Therefore such an extensive
specification has to be done elsewhere. The choosen format is the Extensible
Markup Language abbreviated XML. XML is a set of rules for encoding docu-
ments electronically.1 The according formal syntax specification can be found
at http://www.qedeq.org/current/xml/qedeq.xsd. It specifies a complete
mathematical document format that enables the generation of LATEXbooks and
makes automatic proof checking possible. Further syntax restrictions and some
explanations can be found at http://www.qedeq.org/current/doc/project/
qedeq_logic_language_en.pdf.

Even this document is (or was generated) from an XML file that can be found
here: http://wwww.qedeq.org/0_04_03/doc/math/qedeq_logic_v1.xml. But
now we just follow the traditional mathematical way to present the elements of
mathematical logic.

1.1 Terms and Formulas

We use the logical symbols L = { ‘¬’, ‘∨’, ‘∧’, ‘↔’, ‘→’, ‘∀’, ‘∃’ }, the predi-
cate constants C = {cki | i, k ∈ ω}, the function variables2 F = {fk

i | i, k ∈
ω ∧ k > 0}, the function constants3 H = {hk

i | i, k ∈ ω}, the subject variables
V = {vi | i ∈ ω}, as well as predicate variables P = {pk

i | i, k ∈ ω}.4 For
the arity or rank of an operator we take the upper index. The set of predicate
variables with zero arity is also called set of proposition variables or sentence
letters: A := {p0

i | i ∈ ω}. For subject variables we write short hand certain
lower letters: v1 = ‘u’, v2 = ‘v’, v3 = ‘w’, v4 = ‘x’, v5 = ‘y’, v5 = ‘z’. Further-
more we use the following short notations: for the predicate variables pn

1 = ‘φ’
und pn

2 = ‘ψ’, where the appropriate arity n is calculated by counting the subse-
quent parameters, for the proposition variables a1 = ‘A’, a2 = ‘B’ and a3 = ‘C’,

1See http://www.w3.org/XML/ for more information.
2Function variables are used for a shorter notation. For example writing an identity propo-

sition x = y → f(x) = f(y). Also this introduction prepares for the syntax extension for
functional classes.

3Function constants are also introduced for convenience and are used for direct defined
class functions. For example to define building of the power class operator, the union and in-
tersection operator and the successor function. All these function constants can be interpreted
as abbreviations.

4By ω we understand the natural numbers including zero. All involved symbols are pairwise

disjoint. Therefore we can conclude for example: fk
i = fk′

i′ → (k = k′ ∧ i = i′) and hk
i 6= vj .
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8 CHAPTER 1. LANGUAGE

for the function variables: fn
1 = ‘f ’ und fn

2 = ‘g’, where again the appropriate
arity n is calculated by counting the subsequent parameters. All binary propo-
sitional operators are written in infix notation. Parentheses surrounding groups
of operands and operators are necessary to indicate the intended order in which
operations are to be performed. E. g. for the operator ∧ with the parameters A
and B we write (A ∧B).

In the absence of parentheses the usual precedence rules determine the order
of operations. Especially outermost parentheses are omitted. Also empty paren-
theses are stripped.

The operators have the order of precedence described below (starting with the
highest).

¬,∀,∃
∧
∨
→,↔

The term term is defined recursively as follows:

1. Every subject variable is a term.

2. Let i, k ∈ ω and let t1, . . . , tk be terms. Then hk
i (t1, . . . , tk) is a term and

if k > 0, so fk
i (t1, . . . , tk) is a term too.

Therefore all zero arity function constants {h0
i | i ∈ ω} are terms. They are

called individual constants.5

We define a formula and the relations free and bound subject variable recursivly
as follows:

1. Every proposition variable is a formula. Such formulas contain no free or
bound subject variables.

2. If pk is a predicate variable with arity k and ck is a predicate con-
stant with arity k and t1, t2, . . . , tk are terms, then pk(t1, t2, . . . tk) and
ck(t1, t2, . . . , tk) are formulas. All subject variables that occur at least in
one of t1, t2, . . . , tk are free subject variables. Bound subject variables does
not occur.6

3. Let α, β be formulas in which no subject variables occur bound in one
formula and free in the other. Then ¬α, (α ∧ β), (α ∨ β), (α → β) and
(α↔ β) are also formulas. Subject variables which occur free (respectively
bound) in α or β stay free (respectively bound).

4. If in the formula α the subject variable x1 occurs not bound7, then also
∀x1 α and ∃x1 α are formulas. The symbol ∀ is called universal quantifier
and ∃ as existential quantifier .

Except for x1 all free subject variables of α stay free. All bound subject
variables are still bound and additionally x1 is bound too.

All formulas that are only built by usage of 1. and 3. are called formulas of the
propositional calculus.

5In an analogous manner subject variables might be defined as function variables of zero
arity. Because subject variables play an important role they have their own notation.

6This second item includes the first one, which is only listed for clarity.
7This means that x1 is free in the formula or does not occur at all.
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For each formula α the following proposition holds: the set of free subject vari-
ables is disjoint with the set of bound subject variables..8

If a formula has the form ∀x1 α respectively ∃x1 α then the formula α is called
the scope of the quantifier ∀ respectively ∃.
All formulas that are used to build up a formula by 1. to 4. are called part
formulas.

8Other formalizations allow for example ∀x1 α also if x1 occurs already bound within α.
Also propositions like α(x1) ∧ (∀ x1 β) are allowed. In this formalizations free and bound
are defined for a single occurrence of a variable.



10 CHAPTER 1. LANGUAGE



Chapter 2

Axioms and Rules of
Inference

We now state the system of axioms for the propositional calculus and present
the rules for obtaining new formulas from them.

2.1 Axioms

Here we just list the axioms without further explanations.

Axiom 1 (Implication Introduction). [axiom:THEN-1]

A → (B → A)

Axiom 2 (Distribute Hypothesis over Implication). [axiom:THEN-2]

(A → (B → C)) → ((A → B) → (A → C))

Axiom 3 (Eliminate Conjunction Right). [axiom:AND-1]

(A ∧ B) → A

Axiom 4 (Eliminate Conjunction Left). [axiom:AND-2]

(A ∧ B) → B

Axiom 5 (Conjunction Introduction). [axiom:AND-3]

B → (A → (A ∧ B))

Axiom 6 (Disjunction Introduction Right). [axiom:OR-1]

A → (A ∨ B)

Axiom 7 (Disjunction Introduction Left). [axiom:OR-2]

A → (B ∨ A)

Axiom 8 (Disjunction Elimination). [axiom:OR-3]

(A → C) → ((B → C) → ((A ∨ B) → C))

11
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Axiom 9 (Negation Introduction). [axiom:NOT-1]

(A → B) → ((A → ¬B) → ¬A)

Axiom 10 (Negation Elimination). [axiom:NOT-2]

¬A → (A → B)

Axiom 11 (Excluded Middle). [axiom:NOT-3]

A ∨ ¬A

Axiom 12 (Equivalence Elimination right). [axiom:IFF-1]

(A ↔ B) → (A → B)

Axiom 13 (Equivalence Elimination left). [axiom:IFF-2]

(A ↔ B) → (B → A)

Axiom 14 (Equivalence Introduction). [axiom:IFF-3]

(A → B) → ((B → A) → (A ↔ B))

If something is true for all x, it is true for any specific y.

Axiom 15 (Universal Instantiation). [axiom:universalInstantiation]

∀x φ(x) → φ(y)

If a predicate holds for some particular y, then there is an x for which the
predicate holds.

Axiom 16 (Existential Generalization). [axiom:existencialGeneralization]

φ(y) → ∃x φ(x)

2.2 Rules of Inference

The following rules of inference enable us to obtain new true formulas from the
axioms that are assumed to be true. From these new formulas we derive further
formulas. So we can successively extend the set of true formulas.

Rule 1 (Modus Ponens). [rule:modusPonens] If both formulas α and α → β are true,
then we can conclude that β is true as well.

Rule 2 (Replace Free Subject Variable). [rule:replaceFree] We start with a true for-
mula. A free subject variable may be replaced by an arbitrary term, provided that
the substituted term contains no subject variable that have a bound occurrence in
the original formula. All occurrences of the free variable must be simultaneously
replaced.
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The prohibition to use subject variables within the term that occur bound in
the original formula has two reasons. First it ensures that the resulting formula
is well-formed. Secondly it preserves the validity of the formula. Let us look at
the following derivation.

∀x ∃y φ(x, y) → ∃y φ(z, y) with axiom 15
∀x ∃y φ(x, y) → ∃y φ(y, y) forbidden replacement: z in y, despite y is

already bound
∀x ∃y x 6= y → ∃y 6= y replace 6= for φ

This last proposition is not valid in many models.

Rule 3 (Rename Bound Subject Variable). [rule:renameBound] We may replace a bound
subject variable occurring in a formula by any other subject variable, provided
that the new variable occurs not free in the original formula. If the variable to be
replaced occurs in more than one scope, then the replacement needs to be made
in one scope only.

Rule 4 (Replace Predicate Variable). [rule:replacePred] Let α be a true formula that
contains a predicate variable p of arity n, let x1, . . . , xn be pairwise different
subject variables and let β(x1, . . . , xn) be a formula where x1, . . . , xn are not
bound. The formula β(x1, . . . , xn) must not contain all x1, . . . , xn as free subject
variables. Furthermore it can also have other subject variables either free or
bound.

If the following conditions are fulfilled, then a replacement of all occurrences of
p(t1, . . . , tn) each with appropriate terms t1, . . . , tn in α by β(t1, . . . , tn) results
in another true formula.

• the free variables of β(x1, . . . , xn) without x1, . . . , xn do not occur as
bound variables in α

• each occurrence of p(t1, . . . , tn) in α contains no bound variable of
β(x1, . . . , xn)

• the result of the substitution is a well-formed formula

See III §5 in [3].

The prohibition to use additional subject variables within the replacement for-
mula that occur bound in the original formula assurs that the resulting formula
is well-formed. Furthermore it preserves the validity of the formla. Take a look
at the following derivation.

φ(x) → ∃y φ(y) with axiom 16
(∃y y = y) ∧ φ(x) → ∃y φ(y)
∃y (y = y ∧ φ(x)) → ∃y φ(y)
∃y (y = y ∧ x 6= y) → ∃y y 6= y forbidden replacment: φ(x) by x 6= y,

despite y is already bound
∃y x 6= y → ∃y y 6= y

The last proposition is not valid in many models.

Analogous to rule 4 we can replace function variables too.

Rule 5 (Replace Function Variable). [rule:replaceFunct] Let α be an already proved
formula that contains a function variable σ of arity n, let x1, . . . , xn be pairwise
different subject variables and let τ(x1, . . . , xn) be an arbitrary term where x1,
. . . , xn are not bound. The term τ(x1, . . . , xn) must not contain all x1, . . . , xn

as free subject variables. Furthermore it can also have other subject variables
either free or bound.

If the following conditions are fulfilled we can obtain a new true formula by
replacing each occurrence of σ(t1, . . . , tn) with appropriate terms t1, . . . , tn in
α by τ(t1, . . . , tn).
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• the free variables of τ(x1, . . . , xn) without x1, . . . , xn do not occur as
bound variables in α

• each occurrence of σ(t1, . . . , tn) in α contains no bound variable of
τ(x1, . . . , xn)

• the result of the substitution is a well-formed formula

Rule 6 (Universal Generalization). [rule:universalGeneralization] If α → β(x1) is a true
formula and α does not contain the subject variable x1, then α→ (∀x1 (β(x1)))
is a true formula too.

Rule 7 (Existential Generalization). [rule:existentialGeneralization] If α(x1) → β is al-
ready proved to be true and β does not contain the subject variable x1, then
(∃x1 α(x1))→ β is also a true formula.

2.3 First Propositions

Here we draw the first conclusions.

Proposition 1. [proposition:implicationReflexive1]

A → A

Proof.

(1) A → (B → A) Add axiom 1

(2) (A → (B → C)) → ((A → B) → (A → C)) Add axiom 2

(3) A → (B ∨ A) Add axiom 7

(4) A → ((B ∨ A) → A) SubstPred B by B ∨ A in (1)

(5) (A → ((B ∨ A) → C)) → ((A → (B ∨ A)) →
(A → C))

SubstPred B by B ∨ A in (2)

(6) (A → ((B ∨ A) → A)) → ((A → (B ∨ A)) →
(A → A))

SubstPred C by A in (5)

(7) (A → (B ∨ A)) → (A → A) MP (6), (4)

(8) A → A MP (7), (3)

Proposition 2. [proposition:implication19]

(A ∨ B) → (B ∨ A)

Proof.

(1) A → (A ∨ B) Add axiom 6

(2) A → (B ∨ A) Add axiom 7

(3) (A → C) → ((B → C) → ((A ∨ B) → C)) Add axiom 8

(4) D → (D ∨ B) SubstPred A by D in (1)

(5) (A → (C ∨ A)) → ((B → (C ∨ A)) → ((A ∨ B) →
(C ∨ A)))

SubstPred C by C ∨ A in (3)

(6) D → (D ∨ A) SubstPred B by A in (4)

(7) (A → (B ∨ A)) → ((B → (B ∨ A)) → ((A ∨ B) →
(B ∨ A)))

SubstPred C by B in (5)

(8) (B → (B ∨ A)) → ((A ∨ B) → (B ∨ A)) MP (7), (2)

(9) B → (B ∨ A) SubstPred D by B in (6)

(10) (A ∨ B) → (B ∨ A) MP (8), (9)
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Proposition 3. [proposition:implication23]

¬(A ∧ ¬A)

Proof.

(1) (A ∧ B) → A Add axiom 3

(2) (A ∧ B) → B Add axiom 4

(3) (A → B) → ((A → ¬B) → ¬A) Add axiom 9

(4) (A ∧ ¬A) → A SubstPred B by ¬A in (1)

(5) (A ∧ ¬A) → ¬A SubstPred B by ¬A in (2)

(6) ((A ∧ ¬A) → B) → (((A ∧ ¬A) → ¬B) →
¬(A ∧ ¬A))

SubstPred A by A ∧ ¬A in (3)

(7) ((A ∧ ¬A) → A) → (((A ∧ ¬A) → ¬A) → ¬(A ∧ ¬A)) SubstPred B by A in (6)

(8) ((A ∧ ¬A) → ¬A) → ¬(A ∧ ¬A) MP (7), (4)

(9) ¬(A ∧ ¬A) MP (8), (5)

2.4 Deduction Theorem

We prove the deduction theorem. This leads to the new rule Conditional Proof.

If we can prove B by assuming A as a hypothesis then we have proved A→ B.
This reasoning is justified by the so-called deduction theorem. The deduction
theorem holds for all first-order theories with the usual deductive systems for
first-order logic. However our use of proposition variables and substitution rules
make difficulties. We have to restrict the allowed inference rules to get a simular
result.

Rule 8. [rule:CP] We have the well-formed formula α and add it as a new proof
line. Now we modify the existing inference rules. We can add a further proof
line β if α → β is a well-formed formula and the usage of a previous inference
rule with the following restrictions justifies the addition: for rule 2 occurs the
replaced free variable not in α, for rule 4 occurs the replaced predicate variable
not in α, for rule 5 occurs the replaced function variable not in α.

Proof.

Based on: 1 2

Proof.

2.5 Further Theorems

The deduction theorem enables us to prove more propopsitions.

Proposition 4. [proposition:implication10]

(A → (A → B)) → (A → B)

Proof.

Conditional Proof
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(1) A → (A → B) Hypothesis

Conditional Proof
(2) A Hypothesis

(3) A → B MP (1), (2)

(4) B MP (3), (2)

(5) A → B Conclusion

(6) (A → (A → B)) → (A → B) Conclusion

Proposition 5. [proposition:implication11]

((A → B) → (A → C)) → (A → (B → C))

Proof.

(1) A → (B → A) Add axiom 1

(2) D → (B → D) SubstPred A by D in (1)

(3) D → (A → D) SubstPred B by A in (2)

(4) B → (A → B) SubstPred D by B in (3)

Conditional Proof
(5) (A → B) → (A → C) Hypothesis

Conditional Proof
(6) A Hypothesis

Conditional Proof
(7) B Hypothesis

(8) A → B MP (4), (7)

(9) A → C MP (5), (8)

(10) C MP (9), (6)

(11) B → C Conclusion

(12) A → (B → C) Conclusion

(13) ((A → B) → (A → C)) → (A → (B → C)) Conclusion

Proposition 6. [proposition:implication12]

(A → B) → ((B → C) → (A → C))

Proof.

Conditional Proof
(1) A → B Hypothesis

Conditional Proof
(2) B → C Hypothesis

Conditional Proof
(3) A Hypothesis

(4) B MP (1), (3)

(5) C MP (2), (4)

(6) A → C Conclusion

(7) (B → C) → (A → C) Conclusion

(8) (A → B) → ((B → C) → (A → C)) Conclusion

Proposition 7. [proposition:implication13]

(A → (B → C)) → (B → (A → C))
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Proof.

Conditional Proof
(1) A → (B → C) Hypothesis

Conditional Proof
(2) B Hypothesis

Conditional Proof
(3) A Hypothesis

(4) B → C MP (1), (3)

(5) C MP (4), (2)

(6) A → C Conclusion

(7) B → (A → C) Conclusion

(8) (A → (B → C)) → (B → (A → C)) Conclusion

Proposition 8. [proposition:implication15]

((A → B) ∧ (B → C)) → (A → C)

Proof.

(1) (A ∧ B) → A Add axiom 3

(2) (A ∧ (B → C)) → A SubstPred B by B → C in (1)

(3) ((A → B) ∧ (B → C)) → (A → B) SubstPred A by A → B in (2)

(4) (A ∧ B) → B Add axiom 4

(5) (A ∧ (B → C)) → (B → C) SubstPred B by B → C in (4)

(6) ((A → B) ∧ (B → C)) → (B → C) SubstPred A by A → B in (5)

Conditional Proof
(7) (A → B) ∧ (B → C) Hypothesis

(8) A → B MP (3), (7)

(9) B → C MP (6), (7)

(10) (A → B) → ((B → C) → (A → C)) Add proposition 6

(11) (B → C) → (A → C) MP (10), (8)

(12) A → C MP (11), (9)

(13) ((A → B) ∧ (B → C)) → (A → C) Conclusion

Proposition 9. [proposition:implication17]

(A → B) → ((A → C) → (A → (B ∧ C)))

Proof.

(1) B → (A → (A ∧ B)) Add axiom 5

(2) C → (A → (A ∧ C)) SubstPred B by C in (1)

(3) C → (B → (B ∧ C)) SubstPred A by B in (2)

Conditional Proof
(4) A → B Hypothesis

Conditional Proof
(5) A → C Hypothesis

Conditional Proof
(6) A Hypothesis

(7) C MP (5), (6)

(8) B → (B ∧ C) MP (3), (7)
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(9) B MP (4), (6)

(10) B ∧ C MP (8), (9)

(11) A → (B ∧ C) Conclusion

(12) (A → C) → (A → (B ∧ C)) Conclusion

(13) (A → B) → ((A → C) → (A → (B ∧ C))) Conclusion

Proposition 10. [proposition:implication18]

(A ∧ B) → (B ∧ A)

Proof.

(1) B → (A → (A ∧ B)) Add axiom 5

(2) C → (A → (A ∧ C)) SubstPred B by C in (1)

(3) C → (B → (B ∧ C)) SubstPred A by B in (2)

(4) A → (B → (B ∧ A)) SubstPred C by A in (3)

(5) (A ∧ B) → A Add axiom 3

(6) (A ∧ B) → B Add axiom 4

Conditional Proof
(7) A ∧ B Hypothesis

(8) A MP (5), (7)

(9) B → (B ∧ A) MP (4), (8)

(10) B MP (6), (7)

(11) B ∧ A MP (9), (10)

(12) (A ∧ B) → (B ∧ A) Conclusion

Proposition 11. [proposition:implication20]

A → ¬¬A

Proof.

(1) A → (B → A) Add axiom 1

(2) A → (¬A → A) SubstPred B by ¬A in (1)

(3) (A → B) → ((A → ¬B) → ¬A) Add axiom 9

(4) (¬A → B) → ((¬A → ¬B) → ¬¬A) SubstPred A by ¬A in (3)

(5) (¬A → A) → ((¬A → ¬A) → ¬¬A) SubstPred B by A in (4)

(6) A → A Add proposition 1

(7) ¬A → ¬A SubstPred A by ¬A in (6)

Conditional Proof
(8) A Hypothesis

(9) ¬A → A MP (2), (8)

(10) (¬A → ¬A) → ¬¬A MP (5), (9)

(11) ¬¬A MP (10), (7)

(12) A → ¬¬A Conclusion

Proposition 12. [proposition:implication21]

(A → ¬B) → (B → ¬A)
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Proof.

(1) A → (B → A) Add axiom 1

(2) C → (B → C) SubstPred A by C in (1)

(3) C → (A → C) SubstPred B by A in (2)

(4) B → (A → B) SubstPred C by B in (3)

(5) (A → B) → ((A → ¬B) → ¬A) Add axiom 9

Conditional Proof
(6) A → ¬B Hypothesis

Conditional Proof
(7) B Hypothesis

(8) A → B MP (4), (7)

(9) (A → ¬B) → ¬A MP (5), (8)

(10) ¬A MP (9), (6)

(11) B → ¬A Conclusion

(12) (A → ¬B) → (B → ¬A) Conclusion

Proposition 13. [proposition:implication22]

(A → B) → (¬B → ¬A)

Proof.

(1) A → (B → A) Add axiom 1

(2) C → (B → C) SubstPred A by C in (1)

(3) C → (A → C) SubstPred B by A in (2)

(4) ¬B → (A → ¬B) SubstPred C by ¬B in (3)

(5) (A → B) → ((A → ¬B) → ¬A) Add axiom 9

Conditional Proof
(6) A → B Hypothesis

(7) (A → ¬B) → ¬A MP (5), (6)

Conditional Proof
(8) ¬B Hypothesis

(9) A → ¬B MP (4), (8)

(10) ¬A MP (7), (9)

(11) ¬B → ¬A Conclusion

(12) (A → B) → (¬B → ¬A) Conclusion

Proposition 14. [proposition:implication31]

¬¬¬A → ¬A

Proof.

(1) A → ¬¬A Add proposition 11

(2) (A → B) → (¬B → ¬A) Add proposition 13

(3) (A → ¬¬A) → (¬¬¬A → ¬A) SubstPred B by ¬¬A in (2)

(4) ¬¬¬A → ¬A MP (3), (1)

Proposition 15. [proposition:implication33]



20 CHAPTER 2. AXIOMS AND RULES OF INFERENCE

(¬A → A) → ¬¬A

Proof.

(1) A → A Add proposition 1

(2) ¬A → ¬A SubstPred A by ¬A in (1)

(3) (A → B) → ((A → ¬B) → ¬A) Add axiom 9

(4) (¬A → B) → ((¬A → ¬B) → ¬¬A) SubstPred A by ¬A in (3)

(5) (¬A → A) → ((¬A → ¬A) → ¬¬A) SubstPred B by A in (4)

Conditional Proof
(6) ¬A → A Hypothesis

(7) (¬A → ¬A) → ¬¬A MP (5), (6)

(8) ¬¬A MP (7), (2)

(9) (¬A → A) → ¬¬A Conclusion

Proposition 16. [proposition:implication35]

¬¬A → A

Proof.

(1) A ∨ ¬A Add axiom 11

(2) (A → C) → ((B → C) → ((A ∨ B) → C)) Add axiom 8

(3) (A → A) → ((B → A) → ((A ∨ B) → A)) SubstPred C by A in (2)

(4) A → A Add proposition 1

(5) (B → A) → ((A ∨ B) → A) MP (3), (4)

(6) (¬A → A) → ((A ∨ ¬A) → A) SubstPred B by ¬A in (5)

(7) ¬A → (A → B) Add axiom 10

(8) ¬¬A → (¬A → B) SubstPred A by ¬A in (7)

(9) ¬¬A → (¬A → A) SubstPred B by A in (8)

Conditional Proof
(10) ¬¬A Hypothesis

(11) ¬A → A MP (9), (10)

(12) (A ∨ ¬A) → A MP (6), (11)

(13) A MP (12), (1)

(14) ¬¬A → A Conclusion

Proposition 17. [proposition:implication43]

(A → (B → C)) → ((A ∧ B) → C)

Proof.

Conditional Proof
(1) A → (B → C) Hypothesis

Conditional Proof
(2) A ∧ B Hypothesis

(3) (A ∧ B) → A Add axiom 3

(4) A MP (3), (2)

(5) (A ∧ B) → B Add axiom 4

(6) B MP (5), (2)

(7) B → C MP (1), (4)



2.5. FURTHER THEOREMS 21

(8) C MP (7), (6)

(9) (A ∧ B) → C Conclusion

(10) (A → (B → C)) → ((A ∧ B) → C) Conclusion

Proposition 18. [proposition:implication44]

((A ∧ B) → C) → (A → (B → C))

Proof.

Conditional Proof
(1) (A ∧ B) → C Hypothesis

Conditional Proof
(2) A Hypothesis

(3) B → (A → (A ∧ B)) Add axiom 5

Conditional Proof
(4) B Hypothesis

(5) A → (A ∧ B) MP (3), (4)

(6) A ∧ B MP (5), (2)

(7) C MP (1), (6)

(8) B → C Conclusion

(9) A → (B → C) Conclusion

(10) ((A ∧ B) → C) → (A → (B → C)) Conclusion
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