for questions or link request: module admin

Further Theorems of Propositional Calculus

name: prophilbert2, module version: 1.00.00, rule version: 1.02.00, original: prophilbert2, author of this module: Michael Meyling

Description

This module includes proofs of popositional calculus theorems. The following theorems and proofs are adapted from D. Hilbert and W. Ackermann's `Grundzuege der theoretischen Logik' (Berlin 1928, Springer)

References

This document uses the results of the following documents:

Content

Negation of a conjunction:

1. Proposition
      (
Ø(P Ù Q) ® (ØP Ú ØQ))     (hilb18)

Proof:
1 (ØØP ® P) add proposition hilb6
2 (ØØQ ® Q) replace proposition variable P by Q in 1
3 (ØØ(ØP Ú ØQ) ® (ØP Ú ØQ)) replace proposition variable Q by (ØP Ú ØQ) in 2
4 (Ø(P Ù Q) ® (ØP Ú ØQ)) reverse abbreviation and in 3 at occurence 1
qed

The reverse of a negation of a conjunction:

2. Proposition
      ((
ØP Ú ØQ) ® Ø(P Ù Q))     (hilb19)

Proof:
1 (P ® ØØP) add proposition hilb5
2 (Q ® ØØQ) replace proposition variable P by Q in 1
3 ((ØP Ú ØQ) ® ØØ(ØP Ú ØQ)) replace proposition variable Q by (ØP Ú ØQ) in 2
4 ((ØP Ú ØQ) ® Ø(P Ù Q)) reverse abbreviation and in 3 at occurence 1
qed

Negation of a disjunction:

3. Proposition
      (
Ø(P Ú Q) ® (ØP Ù ØQ))     (hilb20)

Proof:
1 (P ® P) add proposition hilb2
2 (Q ® Q) replace proposition variable P by Q in 1
3 (Ø(P Ú Q) ® Ø(P Ú Q)) replace proposition variable Q by Ø(P Ú Q) in 2
4 (Ø(P Ú Q) ® Ø(ØØP Ú Q)) elementary equivalence in 3 at 8 of hilb5 with hilb6
5 (Ø(P Ú Q) ® Ø(ØØP Ú ØØQ)) elementary equivalence in 4 at 11 of hilb5 with hilb6
6 (Ø(P Ú Q) ® (ØP Ù ØQ)) reverse abbreviation and in 5 at occurence 1
qed

Reverse of a negation of a disjunction:

4. Proposition
      ((
ØP Ù ØQ) ® Ø(P Ú Q))     (hilb21)

Proof:
1 (P ® P) add proposition hilb2
2 (Q ® Q) replace proposition variable P by Q in 1
3 (Ø(P Ú Q) ® Ø(P Ú Q)) replace proposition variable Q by Ø(P Ú Q) in 2
4 (Ø(ØØP Ú Q) ® Ø(P Ú Q)) elementary equivalence in 3 at 4 of hilb5 with hilb6
5 (Ø(ØØP Ú ØØQ) ® Ø(P Ú Q)) elementary equivalence in 4 at 7 of hilb5 with hilb6
6 ((ØP Ù ØQ) ® Ø(P Ú Q)) reverse abbreviation and in 5 at occurence 1
qed

The Conjunction is commutative:

5. Proposition
      ((P
Ù Q) ® (Q Ù P))     (hilb22)

Proof:
1 (P ® P) add proposition hilb2
2 (Q ® Q) replace proposition variable P by Q in 1
3 ((P Ù Q) ® (P Ù Q)) replace proposition variable Q by (P Ù Q) in 2
4 ((P Ù Q) ® Ø(ØP Ú ØQ)) use abbreviation and in 3 at occurence 2
5 ((P Ù Q) ® Ø(ØQ Ú ØP)) elementary equivalence in 4 at 1 of hilb9 with hilb10
6 ((P Ù Q) ® (Q Ù P)) reverse abbreviation and in 5 at occurence 1
qed

A technical lemma that is simular to the previous one:

6. Proposition
      ((Q
Ù P) ® (P Ù Q))     (hilb23)

Proof:
1 ((P Ù Q) ® (Q Ù P)) add proposition hilb22
2 ((P Ù A) ® (A Ù P)) replace proposition variable Q by A in 1
3 ((B Ù A) ® (A Ù B)) replace proposition variable P by B in 2
4 ((B Ù P) ® (P Ù B)) replace proposition variable A by P in 3
5 ((Q Ù P) ® (P Ù Q)) replace proposition variable B by Q in 4
qed

Reduction of a conjunction:

7. Proposition
      ((P
Ù Q) ® P)     (hilb24)

Proof:
1 (P ® (P Ú Q)) add axiom axiom2
2 (P ® (P Ú A)) replace proposition variable Q by A in 1
3 (B ® (B Ú A)) replace proposition variable P by B in 2
4 (B ® (B Ú ØQ)) replace proposition variable A by ØQ in 3
5 (ØP ® (ØP Ú ØQ)) replace proposition variable B by ØP in 4
6 ((P ® Q) ® (ØQ ® ØP)) add proposition hilb7
7 ((P ® A) ® (ØA ® ØP)) replace proposition variable Q by A in 6
8 ((B ® A) ® (ØA ® ØB)) replace proposition variable P by B in 7
9 ((B ® (ØP Ú ØQ)) ® (Ø(ØP Ú ØQ) ® ØB)) replace proposition variable A by (ØP Ú ØQ) in 8
10 ((ØP ® (ØP Ú ØQ)) ® (Ø(ØP Ú ØQ) ® ØØP)) replace proposition variable B by ØP in 9
11 (Ø(ØP Ú ØQ) ® ØØP) modus ponens with 5, 10
12 ((P Ù Q) ® ØØP) reverse abbreviation and in 11 at occurence 1
13 ((P Ù Q) ® P) elementary equivalence in 12 at 1 of hilb6 with hilb5
qed

Another form of a reduction of a conjunction:

8. Proposition
      ((P
Ù Q) ® Q)     (hilb25)

Proof:
1 ((P Ù Q) ® P) add proposition hilb24
2 ((P Ù A) ® P) replace proposition variable Q by A in 1
3 ((B Ù A) ® B) replace proposition variable P by B in 2
4 ((B Ù P) ® B) replace proposition variable A by P in 3
5 ((Q Ù P) ® Q) replace proposition variable B by Q in 4
6 ((P Ù Q) ® Q) elementary equivalence in 5 at 1 of hilb22 with hilb23
qed

The conjunction is associative too (first implication):

9. Proposition
      ((P
Ù (Q Ù A)) ® ((P Ù Q) Ù A))     (hilb26)

Proof:
1 (((P Ú Q) Ú A) ® (P Ú (Q Ú A))) add proposition hilb15
2 ((P ® Q) ® (ØQ ® ØP)) add proposition hilb7
3 ((P ® A) ® (ØA ® ØP)) replace proposition variable Q by A in 2
4 ((B ® A) ® (ØA ® ØB)) replace proposition variable P by B in 3
5 ((B ® (P Ú (Q Ú A))) ® (Ø(P Ú (Q Ú A)) ® ØB)) replace proposition variable A by (P Ú (Q Ú A)) in 4
6 ((((P Ú Q) Ú A) ® (P Ú (Q Ú A))) ® (Ø(P Ú (Q Ú A)) ® Ø((P Ú Q) Ú A))) replace proposition variable B by ((P Ú Q) Ú A) in 5
7 (Ø(P Ú (Q Ú A)) ® Ø((P Ú Q) Ú A)) modus ponens with 1, 6
8 (Ø(P Ú ØØ(Q Ú A)) ® Ø((P Ú Q) Ú A)) elementary equivalence in 7 at 5 of hilb5 with hilb6
9 (Ø(P Ú ØØ(Q Ú A)) ® Ø(ØØ(P Ú Q) Ú A)) elementary equivalence in 8 at 12 of hilb5 with hilb6
10 (Ø(P Ú ØØ(Q Ú B)) ® Ø(ØØ(P Ú Q) Ú B)) replace proposition variable A by B in 9
11 (Ø(P Ú ØØ(C Ú B)) ® Ø(ØØ(P Ú C) Ú B)) replace proposition variable Q by C in 10
12 (Ø(D Ú ØØ(C Ú B)) ® Ø(ØØ(D Ú C) Ú B)) replace proposition variable P by D in 11
13 (Ø(D Ú ØØ(C Ú ØA)) ® Ø(ØØ(D Ú C) Ú ØA)) replace proposition variable B by ØA in 12
14 (Ø(D Ú ØØ(ØQ Ú ØA)) ® Ø(ØØ(D Ú ØQ) Ú ØA)) replace proposition variable C by ØQ in 13
15 (Ø(ØP Ú ØØ(ØQ Ú ØA)) ® Ø(ØØ(ØP Ú ØQ) Ú ØA)) replace proposition variable D by ØP in 14
16 ((P Ù Ø(ØQ Ú ØA)) ® Ø(ØØ(ØP Ú ØQ) Ú ØA)) reverse abbreviation and in 15 at occurence 1
17 ((P Ù (Q Ù A)) ® Ø(ØØ(ØP Ú ØQ) Ú ØA)) reverse abbreviation and in 16 at occurence 1
18 ((P Ù (Q Ù A)) ® (Ø(ØP Ú ØQ) Ù A)) reverse abbreviation and in 17 at occurence 1
19 ((P Ù (Q Ù A)) ® ((P Ù Q) Ù A)) reverse abbreviation and in 18 at occurence 1
qed

The conjunction is associative (second implication):

10. Proposition
      (((P
Ù Q) Ù A) ® (P Ù (Q Ù A)))     (hilb27)

Proof:
1 ((P Ú (Q Ú A)) ® ((P Ú Q) Ú A)) add proposition hilb14
2 ((P ® Q) ® (ØQ ® ØP)) add proposition hilb7
3 ((P ® A) ® (ØA ® ØP)) replace proposition variable Q by A in 2
4 ((B ® A) ® (ØA ® ØB)) replace proposition variable P by B in 3
5 ((B ® ((P Ú Q) Ú A)) ® (Ø((P Ú Q) Ú A) ® ØB)) replace proposition variable A by ((P Ú Q) Ú A) in 4
6 (((P Ú (Q Ú A)) ® ((P Ú Q) Ú A)) ® (Ø((P Ú Q) Ú A) ® Ø(P Ú (Q Ú A)))) replace proposition variable B by (P Ú (Q Ú A)) in 5
7 (Ø((P Ú Q) Ú A) ® Ø(P Ú (Q Ú A))) modus ponens with 1, 6
8 (Ø(ØØ(P Ú Q) Ú A) ® Ø(P Ú (Q Ú A))) elementary equivalence in 7 at 4 of hilb5 with hilb6
9 (Ø(ØØ(P Ú Q) Ú A) ® Ø(P Ú ØØ(Q Ú A))) elementary equivalence in 8 at 13 of hilb5 with hilb6
10 (Ø(ØØ(P Ú Q) Ú B) ® Ø(P Ú ØØ(Q Ú B))) replace proposition variable A by B in 9
11 (Ø(ØØ(P Ú C) Ú B) ® Ø(P Ú ØØ(C Ú B))) replace proposition variable Q by C in 10
12 (Ø(ØØ(D Ú C) Ú B) ® Ø(D Ú ØØ(C Ú B))) replace proposition variable P by D in 11
13 (Ø(ØØ(D Ú C) Ú ØA) ® Ø(D Ú ØØ(C Ú ØA))) replace proposition variable B by ØA in 12
14 (Ø(ØØ(D Ú ØQ) Ú ØA) ® Ø(D Ú ØØ(ØQ Ú ØA))) replace proposition variable C by ØQ in 13
15 (Ø(ØØ(ØP Ú ØQ) Ú ØA) ® Ø(ØP Ú ØØ(ØQ Ú ØA))) replace proposition variable D by ØP in 14
16 ((Ø(ØP Ú ØQ) Ù A) ® Ø(ØP Ú ØØ(ØQ Ú ØA))) reverse abbreviation and in 15 at occurence 1
17 (((P Ù Q) Ù A) ® Ø(ØP Ú ØØ(ØQ Ú ØA))) reverse abbreviation and in 16 at occurence 1
18 (((P Ù Q) Ù A) ® (P Ù Ø(ØQ Ú ØA))) reverse abbreviation and in 17 at occurence 1
19 (((P Ù Q) Ù A) ® (P Ù (Q Ù A))) reverse abbreviation and in 18 at occurence 1
qed

Form for the conjunction rule:

11. Proposition
      (P
® (Q ® (P Ù Q)))     (hilb28)

Proof:
1 (P Ú ØP) add proposition hilb4
2 ((ØP Ú ØQ) Ú Ø(ØP Ú ØQ)) replace proposition variable P by (ØP Ú ØQ) in 1
3 (((P Ú Q) Ú A) ® (P Ú (Q Ú A))) add proposition hilb15
4 (((P Ú Q) Ú B) ® (P Ú (Q Ú B))) replace proposition variable A by B in 3
5 (((P Ú C) Ú B) ® (P Ú (C Ú B))) replace proposition variable Q by C in 4
6 (((D Ú C) Ú B) ® (D Ú (C Ú B))) replace proposition variable P by D in 5
7 (((D Ú C) Ú Ø(ØP Ú ØQ)) ® (D Ú (C Ú Ø(ØP Ú ØQ)))) replace proposition variable B by Ø(ØP Ú ØQ) in 6
8 (((D Ú ØQ) Ú Ø(ØP Ú ØQ)) ® (D Ú (ØQ Ú Ø(ØP Ú ØQ)))) replace proposition variable C by ØQ in 7
9 (((ØP Ú ØQ) Ú Ø(ØP Ú ØQ)) ® (ØP Ú (ØQ Ú Ø(ØP Ú ØQ)))) replace proposition variable D by ØP in 8
10 (ØP Ú (ØQ Ú Ø(ØP Ú ØQ))) modus ponens with 2, 9
11 (P ® (ØQ Ú Ø(ØP Ú ØQ))) reverse abbreviation impl in 10 at occurence 1
12 (P ® (Q ® Ø(ØP Ú ØQ))) reverse abbreviation impl in 11 at occurence 1
13 (P ® (Q ® (P Ù Q))) reverse abbreviation and in 12 at occurence 1
qed

Preconditions could be put together in a conjunction (first direction):

12. Proposition
      ((P
® (Q ® A)) ® ((P Ù Q) ® A))     (hilb29)

Proof:
1 (P ® P) add proposition hilb2
2 (Q ® Q) replace proposition variable P by Q in 1
3 ((P ® (Q ® A)) ® (P ® (Q ® A))) replace proposition variable Q by (P ® (Q ® A)) in 2
4 ((P ® (Q ® A)) ® (ØP Ú (Q ® A))) use abbreviation impl in 3 at occurence 4
5 ((P ® (Q ® A)) ® (ØP Ú (ØQ Ú A))) use abbreviation impl in 4 at occurence 4
6 ((P ® (Q ® A)) ® ((ØP Ú ØQ) Ú A)) elementary equivalence in 5 at 1 of hilb14 with hilb15
7 ((P ® (Q ® A)) ® (ØØ(ØP Ú ØQ) Ú A)) elementary equivalence in 6 at 8 of hilb5 with hilb6
8 ((P ® (Q ® A)) ® (Ø(ØP Ú ØQ) ® A)) reverse abbreviation impl in 7 at occurence 1
9 ((P ® (Q ® A)) ® ((P Ù Q) ® A)) reverse abbreviation and in 8 at occurence 1
qed

Preconditions could be put together in a conjunction (second direction):

13. Proposition
      (((P
Ù Q) ® A) ® (P ® (Q ® A)))     (hilb30)

Proof:
1 (P ® P) add proposition hilb2
2 (Q ® Q) replace proposition variable P by Q in 1
3 ((P ® (Q ® A)) ® (P ® (Q ® A))) replace proposition variable Q by (P ® (Q ® A)) in 2
4 ((ØP Ú (Q ® A)) ® (P ® (Q ® A))) use abbreviation impl in 3 at occurence 2
5 ((ØP Ú (ØQ Ú A)) ® (P ® (Q ® A))) use abbreviation impl in 4 at occurence 2
6 (((ØP Ú ØQ) Ú A) ® (P ® (Q ® A))) elementary equivalence in 5 at 1 of hilb14 with hilb15
7 ((ØØ(ØP Ú ØQ) Ú A) ® (P ® (Q ® A))) elementary equivalence in 6 at 3 of hilb5 with hilb6
8 ((Ø(ØP Ú ØQ) ® A) ® (P ® (Q ® A))) reverse abbreviation impl in 7 at occurence 1
9 (((P Ù Q) ® A) ® (P ® (Q ® A))) reverse abbreviation and in 8 at occurence 1
qed

Absorbtion of a conjunction (first direction):

14. Proposition
      ((P
Ù P) ® P)     (hilb31)

Proof:
1 ((P Ù Q) ® P) add proposition hilb24
2 ((P Ù P) ® P) replace proposition variable Q by P in 1
qed

Absorbtion of a conjunction (second direction):

15. Proposition
      (P
® (P Ù P))     (hilb32)

Proof:
1 ((P Ú P) ® P) add proposition hilb11
2 ((P ® Q) ® (ØQ ® ØP)) add proposition hilb7
3 ((P ® A) ® (ØA ® ØP)) replace proposition variable Q by A in 2
4 ((B ® A) ® (ØA ® ØB)) replace proposition variable P by B in 3
5 ((B ® P) ® (ØP ® ØB)) replace proposition variable A by P in 4
6 (((P Ú P) ® P) ® (ØP ® Ø(P Ú P))) replace proposition variable B by (P Ú P) in 5
7 (ØP ® Ø(P Ú P)) modus ponens with 1, 6
8 (ØQ ® Ø(Q Ú Q)) replace proposition variable P by Q in 7
9 (ØØP ® Ø(ØP Ú ØP)) replace proposition variable Q by ØP in 8
10 (P ® Ø(ØP Ú ØP)) elementary equivalence in 9 at 1 of hilb6 with hilb5
11 (P ® (P Ù P)) reverse abbreviation and in 10 at occurence 1
qed

Absorbtion of identical preconditions (first direction):

16. Proposition
      ((P
® (P ® Q)) ® (P ® Q))     (hilb33)

Proof:
1 ((P ® (Q ® A)) ® ((P Ù Q) ® A)) add proposition hilb29
2 ((P ® (Q ® B)) ® ((P Ù Q) ® B)) replace proposition variable A by B in 1
3 ((P ® (C ® B)) ® ((P Ù C) ® B)) replace proposition variable Q by C in 2
4 ((D ® (C ® B)) ® ((D Ù C) ® B)) replace proposition variable P by D in 3
5 ((D ® (C ® Q)) ® ((D Ù C) ® Q)) replace proposition variable B by Q in 4
6 ((D ® (P ® Q)) ® ((D Ù P) ® Q)) replace proposition variable C by P in 5
7 ((P ® (P ® Q)) ® ((P Ù P) ® Q)) replace proposition variable D by P in 6
8 ((P ® (P ® Q)) ® (P ® Q)) elementary equivalence in 7 at 1 of hilb31 with hilb32
qed

Absorbtion of identical preconditions (second direction):

17. Proposition
      ((P
® Q) ® (P ® (P ® Q)))     (hilb34)

Proof:
1 (((P Ù Q) ® A) ® (P ® (Q ® A))) add proposition hilb30
2 (((P Ù Q) ® B) ® (P ® (Q ® B))) replace proposition variable A by B in 1
3 (((P Ù C) ® B) ® (P ® (C ® B))) replace proposition variable Q by C in 2
4 (((D Ù C) ® B) ® (D ® (C ® B))) replace proposition variable P by D in 3
5 (((D Ù C) ® Q) ® (D ® (C ® Q))) replace proposition variable B by Q in 4
6 (((D Ù P) ® Q) ® (D ® (P ® Q))) replace proposition variable C by P in 5
7 (((P Ù P) ® Q) ® (P ® (P ® Q))) replace proposition variable D by P in 6
8 ((P ® Q) ® (P ® (P ® Q))) elementary equivalence in 7 at 1 of hilb31 with hilb32
qed

Cross References

This document is used by the following documents: