
Hilbert II

Presentation of

Formal Correct

Mathematical Knowledge

Logical Language

Michael Meyling

February 14, 2014



2

The source for this document can be found here:

http://www.qedeq.org/0_04_08/doc/project/qedeq_logic_language.xml

Copyright by the authors. All rights reserved.

If you have any questions, suggestions or want to add something to the list of
modules that use this one, please send an email to the address mime@qedeq.org

The authors of this document are: Michael Meyling michael@meyling.com

http://www.qedeq.org/0_04_08/doc/project/qedeq_logic_language.xml
mailto:mime@qedeq.org
mailto:michael@meyling.com


Contents

Description 5

1 Entities 7
1.1 Elements, Atoms and Lists . . . . . . . . . . . . . . . . . . . . . 7
1.2 List Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Logical Language 9
2.1 Logical Operator Overview . . . . . . . . . . . . . . . . . . . . . 9
2.2 Terms and Formulas . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 General Error Codes . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Subject Variable . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Function Term . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Predicate Formula . . . . . . . . . . . . . . . . . . . . . . 10
2.2.5 Logical Connectives . . . . . . . . . . . . . . . . . . . . . 11
2.2.6 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.7 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.8 Class Term . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.9 Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.10 Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Representations 13
3.1 List Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Document structure 17
4.1 Basic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Basic Rules of Inference 19
5.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Modus Ponens . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Rename bound subject variable . . . . . . . . . . . . . . . . . . . 20
5.4 Substitute free subject variable by term. . . . . . . . . . . . . . . 20
5.5 Substitute predicate variable by formula . . . . . . . . . . . . . . 21
5.6 Substitute function variable by term . . . . . . . . . . . . . . . . 21
5.7 Universal Generalization . . . . . . . . . . . . . . . . . . . . . . . 22
5.8 Existential Generalization . . . . . . . . . . . . . . . . . . . . . . 22

6 Derived Rules 23
6.1 Conditional Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Index 23

3



4 CONTENTS



Description

The project Hilbert II includes formal correct mathematical knowledge. Here
we introduce the underlying formal language for the mathematical formulas.
This is done in an informal way. Important theorems (e.g.: universal decompo-
sition, and any proofs) are left out.

All we will do is manipulate symbols. We build lists of symbol strings and use
certain simple rules to get new lists. So by starting with a few basic lists we
create a whole universe of derived symbol lists. It turns out that these lists could
be interpreted as a view to the incredible world of mathematics.

5



6 CONTENTS



Chapter 1

Entities

To describe the logical language we firstly deal with a more basic notation. This
notation enables us to formulate the syntax of formulas and terms later on.

1.1 Elements, Atoms and Lists

The basic structure we have to deal with is an element. An element is either an
atom or a list.

An atom carries textual data, atoms are just strings.

Each list has an operator and can contain elements again. An operator is also
nothing more than a simple string. A list has a size: the number of elements
it contains. Their elements can be accessed by their position number. An atom
has no operator, no size and no subelements in the previous sense.

1.2 List Notation

Lists and atoms can be written in the following manner. We write down string
atoms quoted with " and the lists as the contents of the operator string followed
by ( and a comma separated list of elements and an closing ).

1.3 Examples

In this syntax we can write down the following element examples.

"I am a string atom"

EMPTY_LIST()

THIS_LIST("contains", "three", "atoms")

OPERATOR("argument 1", "argument 2")

FUNCTION_A(FUNCTION_B("1", "2"), "3")

In the last example we have a list that has the operator FUNCTION_A and contains
two elements. The first element is FUNCTION_B("1", "2") which is a list too.
The second element is the atom "3".

7



8 CHAPTER 1. ENTITIES



Chapter 2

Logical Language

There are different basic things we have to do with. These are predicates, func-
tions, subject variables and logical connectives. In the following all of them are
named and described.

2.1 Logical Operator Overview

Lists are categorized according to their operators. Before we introduce the formal
language in detail the used operators are briefly listed.

logical
AND logical conjunction operator ∧
OR logical disjunction operator ∨
IMPL logical implication operator →
EQUI logical biconditional operator ↔
NOT logical negation operator ¬

logical quantifiers
FORLL universal quantifier ∀
EXISTS existential quantifier ∃
EXISTSU unique existential quantifier ∃!

variables
VAR subject variables x, y, z, . . .
PREDVAR predicate variables A,B,R, . . .
FUNVAR function variables f, g, h, . . .

constants
PREDCON predicate constants =,∈,⊆, . . .
FUNCON function constants ∅,P, . . .
CLASS class term {x|φ(x)}

2.2 Terms and Formulas

Now we define recursivly our formal language. We call some elements subject
variables, terms and some other formulas. We also define the relations a subject
variable is free in and is bound in a term or a formula. If something is not
according to the formal rules errors occur. The error codes are also described.

9



10 CHAPTER 2. LOGICAL LANGUAGE

2.2.1 General Error Codes

The atoms and lists that build up a formula or term are subject to restrictions.
The following errors occur if an atom has no content or has content with length
of 0 or an list has no operator or one of its sub-elements does not exist. These
are mainly technical error codes, only the error code 30470 shows an semantical
error.

30400 no element an element doesn’t exist - it is null
30410 no atom an atom doesn’t exist - it is null
30420 no list a list doesn’t exist - it is null
30430 no atom content an atom has no content - it is null
30440 atom content empty an atom has content with 0 length
30450 no operator a list has no operator - it is null
30460 operator empty a list has an operator with 0 length
30470 list expected list element expected but not found

2.2.2 Subject Variable

We call an element subject variable iff it has the operator VAR and its list size
is 1 with an atom as its only argument.

Each subject variable is also called a term. Only the subject variable itself is
free in itself. No subject variable is bound in a subject variable.

30710 not exactly one argument list has not exactly one element
30730 atom element expected the first and only list element must be

an atom

2.2.3 Function Term

If an element has the operator FUNVAR or FUNCON and its list size is greater
than or equal to 1 with an atom as its first argument and the remaining argu-
ments are all terms then it is called a term too.

Iff a subject variable is free in any sub-element it is also free in the new term.
No other subject variables are free. Analogous for bound subject variables.

30720 argument(s) missing if operator is FUNCON the list must have
at least one element

30730 atom element expected the first list element must be an atom
30740 argument(s) missing if operator is FUNVAR the list must have

more than one element
30770 free bound mixed found a bound subject variable that is al-

ready free in a previous list element
30780 free bound mixed found a free subject variable that is al-

ready bound in a previous list element
30690 undefined constant the operator is FUNCON and this func-

tion constant has not been defined for this
argument number

Any other error for term checks may occur due to the fact that all (but the first)
sub-elements must be terms too.

2.2.4 Predicate Formula

If an element has the operator PREDVAR or PREDCON and its list size is
greater than or equal to 1 with an atom as its first argument and the remaining
arguments are all terms and no errors occur then it is called a formula.



2.2. TERMS AND FORMULAS 11

Iff a subject variable is free in any sub-element it is also free in the new formula.
No other subject variables are free. Analogous for bound subject variables.

30720 argument(s) missing list must have at least one element
30730 atom element expected the first list element must be an atom
30770 free bound mixed found a bound subject variable that is al-

ready free in a previous list element
30780 free bound mixed found a free subject variable that is al-

ready bound in a previous list element
30590 undefined constant the operator is PREDCON and this predi-

cate constant has not been defined for this
argument number

Any other error for formula checks may occur due to the fact that all (but the
first) sub-elements must be terms.

2.2.5 Logical Connectives

If an element has the operator AND, OR, IMPL or EQUI and its list size is
greater than or equal to 2 and the remaining arguments are all formulas and no
errors occur then it is called a formula too.

Iff a subject variable is free in any sub-element it is also free in the new formula.
No other subject variables are free. Analogous for bound subject variables.

30740 argument(s) missing list must have more than one element
30760 exactly 2 elements expected the operator is IMPL and this list size

is not equal to 2
30770 free bound mixed found a bound subject variable that is

already free in a previous list element
30780 free bound mixed found a free subject variable that is

already bound in a previous list ele-
ment

Any other error for formula checks may occur due to the fact that all sub-
elements must be formulas.

2.2.6 Negation

If an element has the operator NOT, its list size is exactly 1 and its only sub-
element arguments is a formula then it is called a formula too.

Iff a subject variable is free in the sub-element it is also free in the new formula.
No other subject variables are free. Analogous for bound subject variables.

30710 exactly 1 argument expected list must have exactly than one ele-
ment

Any other error for formula checks may occur due to the fact that the sub-
element must be a formula.

2.2.7 Quantifiers

If an element has the operator FORALL, EXISTS or EXISTSU its first sub-
element is a subject variable and its second and perhaps its third sub-element
is a formula then the element is called a formula too.

Iff a subject variable is free in the sub-element it is also free in the new formula.
No other subject variables are free. Analogous for bound subject variables.



12 CHAPTER 2. LOGICAL LANGUAGE

30760 2 or 3 arguments expected list must have exactly 2 or 3 elements
30540 subject variable expected first sub-element must be a subject

variable
30550 already bound subject variable already bound in sec-

ond or third sub-element
30770 free bound mixed found a bound subject variable that is

already free in a previous list element
30780 free bound mixed found a free subject variable that is al-

ready bound in a previous list element

Any other error for formula checks may occur due to the fact that the sub-
element must be a formula.

2.2.8 Class Term

An list element with the operator CLASS, containing an subject variable and
an formula is a term.

Iff a subject variable is free in the formula and is not equal to the first sub-
element (which is a subject variable) it is also free in the new term. No other
subject variables are free. If a subject variable is bound in the formula it is
bound in the new term. Also the first sub-element is bound. No other subject
variables are bound.

30760 2 arguments expected the list must contain exactly two argu-
ments

30540 subject variable expected the first sub-element must be a subject
variable

30550 already bound the subject variable is already bound in
the formula

30680 undefined class operator the class operator is still unknown

Any other error for formula checks may occur due to the fact that the second
sub-element must be a formula.

2.2.9 Term

When checking an element for beeing a term the element must have the operator
for a Subject Variable, Function Term or Class Term.

30620 unknown term operator element has no operator that is known as
a term operator

Any other error for the accordant operator checks may occur.

2.2.10 Formula

When checking an element for beeing a formul the element must have the op-
erator for a Predicate Formula, Logical Connective, Negation or Quantifier.

30530 unknown logical operator element has no known logical operator

Any other error for the accordant operator checks may occur.



Chapter 3

Representations

The representation of elements differ according to the viewpoint. Lets take the
following formula for example.

y = {x | φ(x)} ↔ ∀z (z ∈ y ↔ z ∈ {x | φ(x)})

The predicate constant ∈ must have been defined in previous sections.

3.1 List Notation

In list notation the above formula looks like the following.

EQUI(
PREDCON(
"equal",
VAR("y"),
CLASS(
VAR("x"),
PREDVAR(
"\phi",
VAR("x")

)
)

),
FORALL(
VAR("z"),
EQUI(
PREDCON(
"in",
VAR("z"),
VAR("y")

),
PREDCON(
"in",
VAR("z"),
CLASS(
VAR("x"),
PREDVAR(
"\phi",
VAR("x")

13



14 CHAPTER 3. REPRESENTATIONS

)
)

)
)

)
)

3.2 Java

The list notation leads directly to the following Java code.

Element el = new ElementListImpl("EQUI", new Element[] {
new ElementListImpl("PREDCON", new Element[] {

new AtomImpl("equal"),
new ElementListImpl("VAR", new Element[] {

new AtomImpl("y"),
}),
new ElementListImpl("CLASS", new Element[] {

new ElementListImpl("VAR", new Element[] {
new AtomImpl("x"),

}),
new ElementListImpl("PREDVAR", new Element[] {

new AtomImpl("\\phi"),
new ElementListImpl("VAR", new Element[] {

new AtomImpl("x"),
})

})
})

}),
new ElementListImpl("FORALL", new Element[] {

new ElementListImpl("VAR", new Element[] {
new AtomImpl("z"),

}),
new ElementListImpl("EQUI", new Element[] {

new ElementListImpl("PREDCON", new Element[] {
new AtomImpl("in"),
new ElementListImpl("VAR", new Element[] {

new AtomImpl("z"),
}),
new ElementListImpl("VAR", new Element[] {

new AtomImpl("y"),
})

}),
new ElementListImpl("PREDCON", new Element[] {

new AtomImpl("in"),
new ElementListImpl("VAR", new Element[] {

new AtomImpl("z"),
}),
new ElementListImpl("CLASS", new Element[] {

new ElementListImpl("VAR", new Element[] {
new AtomImpl("x"),

}),
new ElementListImpl("PREDVAR", new Element[] {

new AtomImpl("\\phi"),
new ElementListImpl("VAR", new Element[] {



3.3. XML 15

new AtomImpl("x"),
})

})
})

})
})

})
});

3.3 XML

The XML representation within an QEDEQ module looks a little bit different.
Here all first list atoms are represented as the attribute ref or id. So the above
formula may look like the following.

<EQUI>
<PREDCON ref="equal">
<VAR id="y"/>
<CLASS>
<VAR id="x"/>
<PREDVAR id="\phi">
<VAR id="x"/>

</PREDVAR>
</CLASS>

</PREDCON>
<FORALL>
<VAR id="z"/>
<EQUI>
<PREDCON ref="in">
<VAR id="z"/>
<VAR id="y"/>

</PREDCON>
<PREDCON ref="in">
<VAR id="z"/>
<CLASS>
<VAR id="x"/>
<PREDVAR id="\phi">
<VAR id="x"/>

</PREDVAR>
</CLASS>

</PREDCON>
</EQUI>

</FORALL>
</EQUI>

Due to XSD restrictions for the XML document some error codes listed in
Chapter 1 will not occur. Instead the XML will be classified as invalid.



16 CHAPTER 3. REPRESENTATIONS



Chapter 4

Document structure

In this chapter we make some remarks about the QEDEQ XML format.

4.1 Basic structure

The mathematical knowledge of this project is organized in so called QEDEQ
modules. Such a module can be read and edited with a simple text editor. It
could contain references to other QEDEQ modules which lay anywhere in the
world wide web.

A QEDEQ module is build like a mathematical text book. It’s main structure
looks like an LATEX book file. It contains chapters which are composed of sections
and sections are composed of subsections. A subsection may be pure text or an
so called node. A node is either an axiom, definition, proposition or rule. Every
node has an id and could be referenced by that. Essential formal elements of a
node are formulas.

The formal definition of an QEDEQ XML document can be found here: http:
//www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/QEDEQ.html.

4.2 References

In QEDEQ documents reference links are used very often. There exist four goals
for references: modules, nodes, sub formulas and proof lines.

If you want to address an external module you have to know its import la-
bel. See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/
QEDEQ.HEADER.IMPORTS.IMPORT.html.

A reference to a node needs the id of that node. See http://www.qedeq.org/
0_04_08/xml/qedeq/noNamespace/element/NODE.html.

In certain cases it is also possible to reference a subformula of a proposition
formula. This is only possible if the proposition formula is a conjunction (e.g.
the top level logical operation is a conjunction). For each parameter a label is
automatically generated. If the number of conjunction parameters is below 27
the label is simply the n’th alphabet character. If the number is greater 26 the
label is written in the 26 system with alphabet characters as digits. To reference
to a subformula of an external node the syntax is importLabel.nodeId/subRef.

You can also reference to a fromal proof line label, see http://www.qedeq.org/
0_04_08/xml/qedeq/noNamespace/element/L.html. Within the node you just

17

http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/QEDEQ.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/QEDEQ.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/QEDEQ.HEADER.IMPORTS.IMPORT.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/QEDEQ.HEADER.IMPORTS.IMPORT.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/NODE.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/NODE.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/L.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/L.html


18 CHAPTER 4. DOCUMENT STRUCTURE

need to link to the label. Outside the node context (but within the same module)
the syntax is nodeId!lineLabel.

Here follows a reference summary.

external module importLabel
(external) node reference [importLabel.]nodeId
(external) node sub formula ref. [importLabel.]nodeId/subRef
(external) node proof line ref. [[importLabel].nodeId!]lineLabel



Chapter 5

Basic Rules of Inference

To get new formulas from already proven or given ones we introduce proof
rules. We can call a formula proposition if we can write down a sequence of
formulas that derive it from axioms, definitions and propositions by applying
proof methods. Such a sequence is called a proof. It is made of proof lines. A
proof line is a formula and a proof rule usage with its parameters. Each proof
line has a label. The last formula of a proof must be the proposition formula
itself.

We will introduce the following proof rules.

Add add already proven formula
MP modus ponens
Rename rename bound subject variable
SubstFree substitute free subject variable by term
SubstFun substitute function variable by term
SubstPred substitute predicate variable by formula
Universal universal generalization
Existential existential generalization

These basic rules get the rule version number 0.01.00. The rules might get
extended in higher rule versions.1

TODO 20110612 m31: add error code description for rules

5.1 Addition

Addition of an axiom, definition or already proven formula. We have to reference
to the location of a true formula.

name Add name of proof rule
parameter 1 ref reference to axiom, definition or proposition

See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/
ADD.html.

5.2 Modus Ponens

Modus Ponens (Conditional Elimination)

1For example we want to allow modus ponens also with a formula like A↔ B.

19

http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/ADD.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/ADD.html


20 CHAPTER 5. BASIC RULES OF INFERENCE

A

A→ B

B

This rule states that if each of A and A→ B are already true formulas then B
is also a true formula.

name MP name of proof rule
parameter 1 ref1 reference to a proof line label with a formula like A
parameter 2 ref2 reference to a another proof line label with a formula like A→ B

See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/MP.
html.

5.3 Rename bound subject variable

We may replace a bound subject variable occurring in a formula by any other
subject variable, provided that the new variable occurs not free in the original
formula. If the variable to be replaced occurs in more than one scope, then the
replacement needs to be made in one scope only. For example in this case we
replace x by y at the first occurrence.

. . . ∀xA(x) . . .

. . . ∀yA(y) . . .

name Rename name of proof rule
parameter 1 ref reference to a proof line label
parameter 2 original bound subject variable that should be renamed
parameter 3 replacement new name for subject variable
parameter 4 occurrence bound occurence where we want to replace

5.4 Substitute free subject variable by term.

A free subject variable may be replaced by an arbitrary term, provided that the
substituted term contains no subject variable that have a bound occurrence in
the original formula. All occurrences of the free variable must be simultaneously
replaced.

A(x)

A(t)

name SubstFree name of proof rule
parameter 1 ref reference to a proof line label
parameter 2 original free subject variable that should be replaced
parameter 3 replacement replacement term

See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/
SUBST_FREE.html.

http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/MP.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/MP.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/SUBST_FREE.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/SUBST_FREE.html


5.5. SUBSTITUTE PREDICATE VARIABLE BY FORMULA 21

5.5 Substitute predicate variable by formula

Let α be a true formula that contains a predicate variable p of arity n, let x1,
. . . , xn be pairwise different subject variables and let β(x1, . . . , xn) be a formula
where x1, . . . , xn are not bound. The formula β(x1, . . . , xn) must not contain all
x1, . . . , xn as free subject variables. Furthermore it can also have other subject
variables either free or bound.

If the following conditions are fulfilled, then a replacement of all occurrences of
p(t1, . . . , tn) each with appropriate terms t1, . . . , tn in α by β(t1, . . . , tn) results
in another true formula.

• the free variables of β(x1, . . . , xn) without x1, . . . , xn do not occur as
bound variables in α

• each occurrence of p(t1, . . . , tn) in α contains no bound variable of
β(x1, . . . , xn)

• the result of the substitution is a well-formed formula

A(σ)

A(τ)

name SubstPred name of proof rule
parameter 1 ref reference to a proof line label
parameter 2 original predicate variable that should be replaced
parameter 3 replacement replacement formula

See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/
SUBST_PREDVAR.html.

5.6 Substitute function variable by term

Let α be an already proved formula that contains a function variable σ of arity
n, let x1, . . . , xn be pairwise different subject variables and let τ(x1, . . . , xn)
be an arbitrary term where x1, . . . , xn are not bound. The term τ(x1, . . . , xn)
must not contain all x1, . . . , xn as free subject variables. Furthermore it can
also have other subject variables either free or bound.

If the following conditions are fulfilled we can obtain a new true formula by
replacing each occurrence of σ(t1, . . . , tn) with appropriate terms t1, . . . , tn in
α by τ(t1, . . . , tn).

• the free variables of τ(x1, . . . , xn) without x1, . . . , xn do not occur as
bound variables in α

• each occurrence of σ(t1, . . . , tn) in α contains no bound variable of
τ(x1, . . . , xn)

• the result of the substitution is a well-formed formula

http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/SUBST_PREDVAR.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/SUBST_PREDVAR.html


22 CHAPTER 5. BASIC RULES OF INFERENCE

A(σ)

A(τ)

name SubstFun name of proof rule
parameter 1 ref reference to a proof line label
parameter 2 original function variable that should be replaced
parameter 3 replacement replacement term

See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/
SUBST_FUNVAR.html.

5.7 Universal Generalization

If α → β(x1) is a true formula and α does not contain the subject variable x1,
then α→ (∀x1 (β(x1))) is a true formula too.

α→ β(x1)

α→ (∀x1 (β(x1)))

name Universal name of proof rule
parameter 1 ref reference to a proof line label
parameter 2 var subject variable we want to quantify with

See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/
UNIVERSAL.html.

5.8 Existential Generalization

If α(x1) → β is already proved to be true and β does not contain the subject
variable x1, then (∃x1 α(x1))→ β is also a true formula.

α(x1)→ β

(∃x1 α(x1))→ β

name Existential name of proof rule
parameter 1 ref reference to a proof line label
parameter 2 var subject variable we want to quantify with

See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/
EXISTENTIAL.html.

http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/SUBST_FUNVAR.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/SUBST_FUNVAR.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/UNIVERSAL.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/UNIVERSAL.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/EXISTENTIAL.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/EXISTENTIAL.html


Chapter 6

Derived Rules

We can use derived rules that can be completely replaced by the old rules but
enable us shorter proofs. We introduce a new rule that allows us to make an
assumption and derive from that hypothesis. All previous rules get also slightly
modified.

CP conditional proof

These basic rules get the rule version number 0.02.00.

6.1 Conditional Proof

We have the well-formed formula α and add it as a new proof line. We assume
this formula as hypothesis. Now we modify the existing inference rules. We can
add a further proof line β if α→ β is a well-formed formula and the usage of a
previous inference rule with the following restrictions justifies the addition: any
substitution of a free subject variable, a predicate variable or a function variable
is only allowed, if the variable doesn’t occur in α.

This rule can be used recursive. The conjunction of all hypothesis formulas is
called a condition for the proof line we want to check.

name CP name of proof rule
parameter 1 HYPOTHESIS hypothesis
parameter 2 LINES formal proof that uses the hypothesis
parameter 2 CONCLUSION implication with hypothesis and last proof line

See http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/CP.
html.

23

http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/CP.html
http://www.qedeq.org/0_04_08/xml/qedeq/noNamespace/element/CP.html


Index

0.01.00, 19
0.02.00, 23

24


	Description
	1 Entities
	1.1 Elements, Atoms and Lists
	1.2 List Notation
	1.3 Examples

	2 Logical Language
	2.1 Logical Operator Overview
	2.2 Terms and Formulas
	2.2.1 General Error Codes 
	2.2.2 Subject Variable 
	2.2.3 Function Term 
	2.2.4 Predicate Formula 
	2.2.5 Logical Connectives 
	2.2.6 Negation 
	2.2.7 Quantifiers 
	2.2.8 Class Term 
	2.2.9 Term 
	2.2.10 Formula 


	3 Representations
	3.1 List Notation
	3.2 Java
	3.3 XML

	4 Document structure
	4.1 Basic structure
	4.2 References

	5 Basic Rules of Inference
	5.1 Addition
	5.2 Modus Ponens
	5.3 Rename bound subject variable
	5.4 Substitute free subject variable by term.
	5.5 Substitute predicate variable by formula
	5.6 Substitute function variable by term
	5.7 Universal Generalization
	5.8 Existential Generalization

	6 Derived Rules
	6.1 Conditional Proof

	Index

